

HAZARD IDENTIFICATION, RISK ANALYSIS AND RECOMMENDATIONS FOR

IMPROVING SAFETY IN PHARMACEUTICAL INDUSTRY

MONIKANKANA SWARNAKAR, N.A.SIDDIQUI & SOUMADEEP BAKSI

Department of Health, Safety and Environment University of Petroleum and Energy Studies, Dehradun, India

ABSTRACT

Pharmaceutical companies form the backbone of an effective health care service and its development is essential for the progress of any nation. With the evolution of pharmaceutical industry new processes are being used for cost effective and high productivity. The danger of an accident happening also increases with induction of new processes. As of late, particularly from 2010 to 2015, accidents in pharmaceutical industry has been significantly increased mainly because of human errors, resulting in fire, explosions and various accidents. The majority of the incidents happen because of the low familiarity with the safe working procedure.

This study concentrates the methods that are being used to assess and minimize the risks that dwell in any company thereby enhancing the wellbeing of the industry. The methods that are mainly used are Hazard identification, Task analysis, internal audit, HAZCOM using MSDS, and Failure mode and effect analysis (FMEA). The palpable proof of mechanical threats and hazardous zones are isolated effectively and sound incident circumstances are recognized which could hamper the workplace. This paper deals with the various techniques that have been implemented in reducing the risk to as low as reasonably practicable (ALARP) level and necessary recommendations are made to improve the safety inside the pharmaceutical plant premises.

KEYWORDS: Risk Assessment, Hazard Identification, Task Analysis, Internal Audit, Hazcom

INTRODUCTION

The Indian Pharmaceutical industry has been seeing incredible development as of late, controlled by increasing utilization stages of the nation and solid interest from fare markets. The pharmaceutical business in India is evaluated to be worth about US\$ 10 billion, developing at a yearly rate of 9%. In world rankings, the residential business stands fourth as far as volume and thirteenth in quality terms. The positioning in worth terms might likewise be a reflection of the low costs at which medications are sold in the nation. The key features of the industry include being high on regulations, less price elasticity, limited consumer choice, research oriented and highly dependent on the health infrastructure. ^[11] For any industry to be effective in all terms, it ought to meet the generation necessities to achieve greater profits as well as keep up the most astounding safety norms for all concerned activities. The business needs to recognize the hazards, survey the related risks and control the risks to middle of the road level on a nonstop premise to achieve the desires results.

Generally with the rising episodes of flame mishaps in pharmaceutical manufacturing plants, the safety concerns have turned into a genuine matter of open deliberation. The major harms in the pharmaceutical industries are most generally brought about by a slip, trip or fall, release of hazardous substances or mishandling. In spite of a tremendous change in the innovation and strategies used to build and fabricate plants, there are occurrences that happen like gas leakages, blasting of boilers or a whole process plant is leveled to the ground by flame. All the process industries and pharmaceutical plants are in no way, shape or form resistant from calamities, as the occasions at Chernobyl and Bhopal in the past and all the more as of late, in Japan have appeared.

HAZARD IDENTIFICATION AND RISK ANALYSIS IN PHARMACEUTICAL INDUSTRY

Hazard Identification Risk Assessment (HIRA) includes a basic framework for gathering data pertaining to present safety measures and use of a decision making process. It helps in identifying the cause that may result in a major accident, and the outcomes, and what alternatives are there to anticipate and alleviate the risk. It likewise helps with diminishing the event of incidents and near misses. It is a procedure of determining so as to characterize hazards their likelihood, recurrence and seriousness and assessing the risk, including wounds and potential loses. Risk assessment gives the true premise to exercises proposed in the methodology to lessen misfortunes from distinguished hazards. ^[2] Ultimately, the objective is to reduce the level of hazards and risk associated with them in the industry which is one of the important factors which has an irresistible impact on the betterment of the company. This paper briefly describes five methods used for hazards identification and risk analysis in a pharmaceutical industry with inspected issues and provides important suggestions that have been made to improve the safety of the same.

Process Description

The production of oral solid dosages, for example, tablets is a complex multi-stage process under which the beginning materials change their physical qualities various times before the last dose structure is created. Conventionally, tablets have been made by granulation, a procedure that confers two essential & critical qualities: liquidity and ability to be versatile & compact. Both wet granulation and dry granulation (slugging and roll compaction) are utilized. Despite whether tablets are made by direct pressure or granulation, the initial step, processing and blending, is the same; consequent steps contrast. Various unit procedures are included in making tablets, including molecule size diminishment and estimating, mixing, granulation, drying, compaction, and (as often as possible) covering. Different components connected with these procedures can truly influence content bioavailability, security & safety, or consistency.

METHODOLOGY

The methodology mainly corresponds to study and analyze the causes of potentially dangerous phases of a pharmaceutical company by Identification of hazards, Assessment of risks using the FMEA technique (failure modes and effects analysis) for the mechanical equipment like pumps, Task analysis of the hazards related to human behavior, Compliance audit through Checklists for the boilers (check lists analysis), HAZCOM through the analysis of Material Safety Data Sheet analysis and communication of hazards to the workers and hazard analysis and risk assessment.

Hazard Identification

Hazard Identification technique requires the employer, in discussion with the workers ought to recognize all apparently noticeable hazards which can possibly bring about an incident / accident in association with Likelihood, Severity and Consequences of the accident/incident. The Hazard Identification procedure is used to distinguish dangers that could achieve a potential major accident for the full extent of operational modes, including normal operations, start-up, and shutdown, moreover potential, basic or unpredictable conditions. Reassessment of Hazards has to be done at a point where huge change in operations has happened or manufacture of any new substance has been added in the plant facility.

[3]Hazards are identified in the pharmaceutical plant for its inventories, layout of the plant and the process involved in the manufacturing process, storage condition etc. Walk through surveys were carried out in discussion with plant operator, manager under their supervision and assistance. The HAZID study generally outlines all the possible hazards involved in the plant and gives the possible scenarios for leaks, fires, explosion and other possible hazards. (Selvan et.al). All the hazards that are identified are tabulated along with the prevailing control measures. Necessary recommendations are made on further analysis if the prevailing control measures and the further suggestions that were made are taken to the top level management's knowledge.

FMEA

The second methodology that has been implemented for the analysis of risks is Failure mode and effect analysis. Failure mode effect analysis was initially created by NASA to enhance and check the reliability of space program equipment. FMEA is a standout amongst the most critical and generally utilized methods for risk assessment. It is deliberate to be a proactive activity process completed ahead of time actualizing new or changes in items or process in a perfect world. FMEA is mostly conducted in the configuration or procedure improvement stages and it distinguishes corrective actions required to decrease failures to guarantee the most noteworthy conceivable yield safety and reliability.^[4]

According to this method, risk assessment was conducted for the pumps by a review team who seriously investigate the potential failure modes, potential failure effects, potential causes and controls that are already in place are analyzed. Based on the analysis of past failure data and the expert assistance, severity rating is given to the particular failure mode and similarly occurrence and detects ability.

Severity

Severity generally denotes the seriousness of the effect that is being caused by the failure mode. If the rating of severity is higher, it means that the seriousness that will be caused by the risk will also be higher.

Ranking	Event /Failure	Level of Effect
10	Highly dangerous event without any warning	
		Unacceptably high
9	Highly dangerous Events that happen with	
	warning	Unacceptably high
8	Destructive failure without safety	Very high
7	System inoperable equipment damage	High
6	System inoperable minor damage	Moderate
5	System inoperable without damage	Low
4	Performance degradation	Very low
3	Performance degradation without system failure	
		Minor
2	System operation with minimal interference	Very minor
1	None	None

Table 1: Table for severity Level

Occurrence

The occurrence of the event mainly depends upon the data of the past accidents and failures from which the likelihood of the particular failure can be isolated.

Rating	Classification	Example
10		
9	Very high	Inevitable failures
8		
7	High	Repeated failures
6		
5	Moderate	Occasional failures
4		
3	Low remote	Few failures
2		
1	Remote	Failures unlikely

Table 2: Table for Occurrence Level

Detect Ability

It is the assessment of the likelihood that the prevailing control measure will detect the failure even and its cause.

Table 3: Table for Detect Ability Level

Rating	Detection by Control	Detection Level
10	Failure mode not detected by design control	Absolute uncertainty
9	Very remote chances of detection by the design control	Very remote
8	Remote chances of detection by design control	Remote
7	Very low chances of detection of failure mode by design control	Very low
6	low chances of detection of failure mode by design control	Low
5	Moderate chances of detection of failure mode by design control	Moderate
4	Moderately high chances of detection of failure mode by design control	Moderately high
3	High chances of detection of failure mode by design control	High
2	Very high chances of detection of failure mode by design control	Very high
1	Failure mode detected by design control	Almost certain

RPN number is then calculated by the formula RPN = S*O*D

After the evaluation of RPN number, necessary recommendations are done so as to reduce the RPN number of the analyzed activity /product /service and similar procedure is followed for the other flow related equipments and necessary actions recommended are tabulated. A graph is plotted with activity/event that is leading to the failure is taken along the X-axis and RPN values are taken along Y-axis to form a RPN chart. From that graph the event/activity that has higher RPN is shown immediate attention and necessary actions are taken to reduce the same. Same procedure is followed to other activities (Suresh etal, 2014)

Compliance Audit (Checklist Analysis):

This is a most viable method for catching and going on the experience of others, also, along these lines is a significant hazard identification method. These methods are generally utilized towards the end as a last check with the goal that nothing has been dismissed by different strategies and this strategy don't cover a wide range of danger, especially facility-specific hazards, and they don't encourage lateral thinking. They can be viably utilized for agreeing to a

engineering standard or a lawful compliance.^[5]

According to the Indian boilers act 1923, a checklist was prepared to audit the compliance of the boilers present inside the industry premises with the assistance of the safety supervisor and necessary corrective actions are recommended in order to remove the non-conformities.

Task Analysis

This method is implemented in commercial ventures fundamentally to distinguish dangers connected with human variables, procedural blunders and the 'man-machine interface'. This procedure can most broadly be connected to workplaces, for example, control rooms, or to particular occupations, for example, start-up or shut-down operations. All the categories of dangers that are distinguished by the technique incorporate or may incorporate procedural failures, HR issues, risky human mistakes and inaccurate reactions to alerts.^[5]

Some of the operations that are capable of causing danger to the workers in the event of not following the safe operating procedures and hoarse play of the workers are shortlisted along with their corresponding hazards. Then necessary hazard control methods that are to be followed are also tabulated and communicated to the workers.

HAZCOM using MSDS

MSDS is a helpful document of data to acknowledge the existence of the risks associated with the chemicals and treatment of perilous or harmful materials. It is additionally great to allude the specialized points of interest given by the supplier of materials on their items. ^[3] Analysis of all the chemicals that are used in the production process of the company are collected and based on the analysis of their properties from the MSDS (Material Safety Data Sheet) of the chemicals, the chemicals are isolated based on their hazardous nature. The highly dangerous chemicals are checked whether the workers carefully follow the handling procedures and know the nature of hazardous chemical they are working with and the measures to be taken in case of an emergency. If it is not known, it has been effectively communicated to the workers by explaining the hazards involved in the handling of hazardous chemicals in the regional language.

RESULTS AND DISCUSSIONS

Hazard Identification

Hazard identification is carried out in the whole plant and necessary recommendations are made to reduce the vulnerability by establishing proper control measures to the hazards associated with the plant. The table below lists the hazards that were prevailing in various zones of the company and necessary recommendations that are suggested to reduce its occurrence and severity.

LOCATION/ PROCESS/ ACITIVITY/ UNIT	ZONE	HAZARD PRESENT	CAUSES	CONTROL MEASURE	RECOMMENDATIO NS
HSD Storage	Zone 1	Fire &	Spillage of	Secondary containment is	
Tank		explosion,	HSD	provided	
		Air	Hot work	Hot work permit is in	
		pollution,	operation	place	
		Loss of	Electrical	Fire hydrant is provided in	
		man &	spark from	the area	

Table 4: Table for Hazard Identification

			Table	4: Contd.,	
		material,	open circuit		
		Fuel	Spark from	HSD is received in closed	Spark arrestor should
		Losses	running	drums	be used in vehicles.
			vehicles		
			Unsafe Act	Smoking is not allowed	No smoking board
				inside the factory	should be present in
				premises	the storage area
Diesel	Zone 1	Fire &	Excessive	Ear muffs are given to	Proper engineering
Generator		explosion,	noise	workers	control should be in
		Air			place to reduce the
		pollution,		~~	noise level
		Noise	Toxic fumes	Silencer is attached with	Exhaust should to
		pollution	from	chimney	monitored once ina
			exhaust		year to prevent air
			TT / 1	XX 1 1 1	pollution.
			Hot Work	Hot work permit is in	
			Electrical	place	
			Spork	the erec	
Gos Bonk I	Zona 8	Fire &	Spark	Manual gas detection	Automatic gas
Gas Dalik I	Zone o	explosion		system is present	detection system
		Air	gas	system is present,	should be installed
		nollution	Welding	Hot work permit is in	
		Loss of	Operation	place	
		man &	Electrical	CO2 fire extinguisher is	
		material.	spark	available and earthing is	
		Fuel	span	provided.	
		Losses	Unsafe acts	Smoking is not allowed	No smoking board
				inside the factory	should be present in
				premises	the storage area
			Spark from	Gas is received in closed	Spark arrestor should
			running	cylinders	be used in vehicles.
			vehicles		
Boiler	Zone 2	Fire &	Excess	Pressure gauge is in place,	
		explosion,	Pressure	Calibration of instrument	
		Air	inside the	is done every year	
		pollution,	boiler		
		Noise	Gas leakage	Manual gas detection	Automatic gas
		pollution,	due to	system 1s present,	detection system
		Loss of	damaged		should be installed
		man &	pipeline		
		material	HOL WORK	Hot work permit is in	
			Excessive	For muffs are given to	Proper engineering
			Excessive	Ear muns are given to	control should be in
			noise	workers	place to reduce the
					noise level
			Electrical	Fire hydrant is provided in	
			spark from	the area	
			open circuit		
Solvent	Zone 3	Fire &	Spillage of	SOP is available and	
Storage Area		explosion.	solvent	containers are closed	
	1	Air		properly.	
		pollution,	Hot work	Hot work permit is in	
		Loss of	operation	place	

			Table	4: Contd.,	
		man &	Developme	DCP fire extinguisher is	Workers should be
		material	nt of static	available.	trained about static
			charge		charge.
			Spark from	Flame proof electrical	
			open	fittings are present.	
			electric		
			circuit		
Electrical	Zone 2	Fire &	Spark from	CO2 fire extinguisher is	
Control Panel		explosion,	open	available and earthing is	
		Air	electric	provided.	
		pollution.	circuit		
		Loss of	Hot work	Hot work permit is in	
		man &	operation	place	
		material			
Warehouse	Zone 4	Fire &	Leakage	Careful handling of the	Spill kit should be in
	20110	explosion	from	containers	place and emergency
		Air	Containers		eve washer should be
		pollution.	Containers		present.
		Injury to	Hot work	Hot work permit is in	present.
		workers	Operation	place	
		Property	Electrical	CO2 fire extinguisher is	
		damage	Snark	available and earthing is	
		Fuel	Spark	provided	
		Losses	Unsafe Acts	Workers are trained to	Warning signs on near
		Losses		follow SOP	miss should be
					nrovided
			Charging of	DCP fire extinguisher is	Workers should be
			Stacker	available	trained about static
			batteries		charge
			Falling of	PPE is provided to	charge.
			container	workers	
			from the	workers.	
			stacker		
			Overload in	Maximum load canacity is	Stacker load test
			the steelsers	displayed on the steaker	should be done every
			the stackers	and reals	1 year
Chamical	Zono 7	Fire &	Lookaga	Spill control kit is	I year.
chemical	Zone /	avnlosion	from	spin control Kit is	
storage (QC)			Containar	avallable.	
		All	Container	Pody shower is present	
		pollution,	chemical	Body shower is present.	
		injuly to	Splaslies	The muffle furness and	
		WOIKEIS,	Fuilles	drain a over is best seen	
		Property	During basting/	firms hood	
		damage,	neating/	lume nood.	
	-	Fuel	drying of		
	-	Losses	materials	NT	
	+	l	rumes from	inose mask is provided to	
	+	<u> </u>	open	workers.	
A :	7	Darres	containers		
Alr	Zone 5	Damage	Generation	Dust extraction system is	
Compressor		to workers	of dust	used to collect the dust.	
		nealth	particles		D
			Excessive	Ear mutts are provided.	Proper engineering
		<u> </u>	noise		control should be in
					place to reduce the

			Table	4: Contd.,	
					noise level
Granulation	Zone 5	Worker	Developme	DCP fire extinguisher is	Workers should be
Machine		injury	nt of static	available and equipments	trained about static
			charge	are earthed.	charge and conductive
					shoes should be
					provided.
			Generation	Nose mask is provided	
			of dust	and dust extraction system	
			particles	is used to collect the dust.	
			Excessive	Ear muffs are provided.	Proper engineering
			noise		control should be in
					place to reduce the
					noise level
LPG storage	Zone 6	Fire &	Leakage of	Manual gas detection	Automatic gas
Area		explosion,	gas	system is present,	detection system
		Air			should be installed
		pollution,	Welding	Hot work permit	
		Loss of	Operation		
		man &	Electrical	CO2 fire extinguisher is	
		material,	spark	available and earthling is	
		Fuel		Provided.	
		Losses	Unsafe acts	Smoking is not allowed	No smoking board
				inside the factory	should be present in
				premises, Danger sign is	the storage area
				present	

FMEA

Failure mode effect analysis that has been carried out for the pump area and necessary recommendations are done to reduce the RPN so as to reduce the effects caused due to failure of equipment.

Activi ty/ Produ ct/ Servic e	Potential failure Modes	Potential failure effects	Sever ity (S)	Potenti al Causes	Occurred nce (O)	Current control	Detect ion (D)	RP N	Actions Recomme nded	Resp.
Pump	Main	Damage	6	Pump	3	Inspect	6	108		
s	Bearing	to the		cannot		ion				
	Failure	pump		spin						
	Leakage in	Insufficie	5	Ruptur	4	Inspect	5	100	Discharge	Mr.
	water	nt water		e		ion			test	Kisha
	control	discharge		during						n
	valve			operati						Aswa
				on						1
	Water	No water	5	Human	4	Inspect	4	80	Verificatio	Mr.
	control	discharge		error		ion			n should	Kisha
	valve is								be done	n
	inappropri								by the	Aswa
	ately								safety	1
	closed								supervisor	

Table 5: Failure Mode and Effect Analysis for Pumps

			Table	5: Contd.,	,				
Short	Damage	6	Breake	2	Inspect	3	36		
Circuit in	to the		r fails		ion				
the	property		to open						
electrical	environm								
panel	ent, Loss								
	of man								
Drive	Reductio	6	Less	2	Inspect	3	36		
Shaft	n in flow		Pressur		ion				
Fracture	rate		e						
No signal	No water	3	Device	2	Inspect	5	30		Mr.
in the	discharge		failure		ion				Kisha
pressure/									n
flow									Aswa
transmitter									1
Manual	Damage	6	Diversi	1	Redund	3	18	Independe	Mr.
test valve	to the		on of		ant			nt check	Kisha
is	pump		firewat		valve			of valve	n
prematurel			er		in			position	Aswa
y opens/ is			overbo		dischar			after	1
left open			ard		ge line			testing &	
after test					& Low			periodicall	
					pressur			v	
					e			thereafter	
					switch			Indicate	
					is			pressure	
					present			switch	
								status in	
								control	
								room	
								should be	
								maintaine	
								d	
Manual	Damage	6	D1 1 1	1	Pressur	3	18		
test valve	to the		Blocked		e				
prematurel	pump		dischar		control				
y closes/ is			ge		valve is	İ	1		
left closed			from		present				
during test			firewat						
U			er						
			pump						
		1				l	1		
Isolation	Damage	6	Loss of	1	Inspect	3	18	Independe	Mr.
valve is	to the		water		ion		1	nt check	Kisha
prematurel	pump				1		1	of valve	n
y closes/ is	<u>ь 1</u>		1		ł		1	position	Aswa
left closed	1				1		1	after	1
after test	1				1		1	testing	1
						1	1	should be	<u> </u>
	1				1		1	done	1
					1		1		
						i			

From the above graph, it is evident that the main activity /failure event is main bearing failure and its corresponding RPN is 108. So necessary actions are taken initially to reduce the RPN value of this activity followed by the others according to their RPN values.

Compliance Audit

A checklist was prepared in accordance with the boilers act 1923, and audit has been conducted for the battery of boilers in the plant premises with the help of plant operator and non-compliances with the legal compliances are noted down and actions are recommended to the top management for further perusal.

SI. No.	Description	Conformance (Yes/ No/ NA)	Recommended Corrective Action
1.	Boiler has been enlisted as per the	Yes	
	procurements of the Indian Boilers Act 1923		
2.	Boiler limit is more than 25 liters	Yes	
3.	Boiler has more than one kilogram for each	Yes	
	centimeter square outline gauge pressure and		
	working gauge pressure		
4.	Water is warmed above one hundred degrees	Yes	
	centigrade in the boiler		
5.	Pressure at which steam goes through steam	Yes	
	funnel surpasses 3.5 kilogram for every		
	square centimeters above atmospheric		
	pressure		
6.	Stem pipe surpasses 254 millimeters in	Yes	
	internal diameter and the pressure of steam		
	surpasses 1 kilogram for each square		
	centimeters above the atmospheric pressure		

Table 6: Checklist for Compliance Audit

	Table 6: Co	ontd.,	
7.	Worker who proposes to undertake any	Yes	
	welding work associated with or related to a	(PTW	
	boiler, or a boiler segment or both has a	Certificate)	
	Welders authentication from Competent		
	Authority		
8.	Annual inspection by boiler inspector is done	No	I have insisted in doing
			the inspection by the
			factory inspector as it a
		* *	legal requirement.
9.	A working certificate showing validity	Yes	
	period, maximum allowable pressure is		
	displayed		
10	A qualified person is present to take abarga	Vac	
10.	of the hoiler	105	
11	Any mishan that occurs to a boiler or boiler	Ves	
11.	component is reported in written by the	103	
	proprietor or individual in charge within 24		
	hrs.		
12.	Hydraulic test is performed once in 12	Yes	
	months		
13.	Inspection of battery of boilers is done	Yes	
14.	Examination of the water gauges, pressure	Yes (Calibration	
	gauge and safety valves	Certificate	
		Available)	
15.	Manholes with door, hand hole and sight	Yes	
	holes, and cleaning plugs and all caps in the		
	header are available		
16	There is adaptate water in the bailer and that	Vac	
10.	the gauge cocks are working freely while	105	
	working		
	working		
17.	Cock on top of is opened to permit air to	Yes	
	escape while working		
18.	Blow off cock and Scum cock are available	Yes	
19.	Blow off cock is completely shut and tight	Yes	
	while working		
20		x 7	
20.	safety valves and feed check valve are	Yes	
	working properly		
21	Water is spilling from any part of the boiler	Yes	I have insisted to seal the
<u>~1.</u>	in the is spring none any part of the boller	100	leakage in the pipe as
			soon as possible.
22.	Feed pump is in working order	Yes	1
23.	Pressure gauge has a plain mark on it	Yes	
	demonstrating the most elevated pressure		
	allowed for the boiler and the mark is kept		
	clean		

	Table 6: Contd.,						
24.	Low water safety valve is present	Yes					
25.	Proper PPE is worn by the workers working	Yes					
	in the boiler area						
26.	No structural change, expansion or	Yes					
	recharging in or to a boiler without earlier						
	sanction of Chief Inspector						
27.	A person is allowed to go inside the boiler	Yes					
	with proper disconnection						
28.	SOP is present in the area	Yes					
29.	Proper PPE is present for visitors	No	Additional Ear muffs				
			should be kept				

Task Analysis

Task analysis is carried out for all activities that are capable of posing threat to the employees mainly because of their behavior by continuous monitoring of their work behavior and past accident data, the activities are isolated and hazards that are caused by them are tabulated. Then necessary control methods are established to minimize the hazards and they are effectively communicated to the workers by PEP talks.

Table 7:	Table	for	Task	Analysis
----------	-------	-----	------	----------

S. NO.	TASK	POTENTIAL HAZARDS	HAZARD CONTROL METHODS	
1.	Welding /	Eye Damage	1.Welding/cutting operations shall be performed	
	Cutting	Electric Shock	by trained & certified workers.	
	Operation	Cuts & Burns	2.Special metal fire extinguisher (or proportional)	
			must be quickly accessible in the work region and	
			must be kept up in a condition of availability for	
			moment use.	
			3. Garbage should not be permitted to aggregate	
			on the premises, as it might be lighted by the	
			flashes.	
			4. When welding is being performed on a higher	
			level where there is an exposure to workers	
			below, the area directly below the welding shall	
			be cleared and marked as a "Do Not Enter Zone",	
			to protect any workers passing underneath from	
			being hit by sparks.	
			5. All electrical lines & small apparatuses should	
			be assessed and in good working condition prior	
			to use.	
			6. During welding operations, legitimate welding	
			gloves and a full-confront, UV-beam defensive	
			shield should be worn to prevent wounds to the	
			Administrator.	
			7. A fire watch must be kept up no less than 30	
			Minutes after the hot work is finished.	
2.	Welding /	Eye Damage	1.Welding/cutting operations shall be performed	
	Cutting	Electric Shock	by trained & certified workers.	
	Operation	Cuts & Burns	2.Special metal fire extinguisher (or proportional)	
			must be quickly accessible in the work region and	
			must be kept up in a condition of availability for	
			moment use.	
			3. Garbage should not be permitted to aggregate	

			Table 7. (Contd
			Table 7: C	conta.,
			on the premises, as it might be lighted by the	
			flashes.	11' ' 1 ' C 1 1' 1
			4. when	weiding is being performed on a nigher
			level whe	ere there is an exposure to workers
			below, th	e area directly below the welding shall
			be cleared	d and marked as a "Do Not Enter Zone",
			to protect	any workers passing underneath from
			being hit	by sparks.
			5. All ele	ctrical lines & small apparatuses should
			be assess	ed and in good working condition prior
			to use.	
			During	welding operations, legitimate welding
			gloves an	d a full-confront, UV-beam defensive
			shield sho	ould be worn to prevent wounds to the
			Administ	rator.
			7. A fire	watch must be kept up no less than 30
			Minutes a	after the hot work is finished.
		Electrical		
		Shock		
		Electrical Burn		
		Arc Flash		
		Bodily injury		
3.	Working in a	Unsafe oxygen	1.	Work permit must be taken by the worker.
-	confined	level	2.	The worker must a trained in working in a
	space	Flammable and		Confined space.
	spuee	explosive	3	Initial gas testing should be done
		atmosphere	4	Worker should wear clear safety glasses
		Engulfment		cloves and safety helmet & safety shoes
		Flectrical	5	Gas detector with the entrant should be
		Licenical	5.	present for constant monitoring of atmosphere
		hazards		present for constant monitoring of atmosphere
		Physical		at all times.
		i ilysicai	 6.	Worker should take care at all times and think
		—hazards		worker should take care at an times and timik
				about the task at hand
		hozorda		
		Slip & trip		
		Manual		
		handling		
		nazaros		
		Psychological		
4	D	hazards		
4.	Battery	Foot Injury due	1.	Worker should wear safety shoes, goggles,
	repair/	dropping of		apron, gloves
	maintenance	object on foot	2.	Worker should follow proper battery handling
	work			procedures
		Burns & eye	3.	Lockout/ tag-out & manufacturer's
		injury due to		instructions should be strictly followed by the
		Battery acid		worker
		spillage/splash	4.	Fire extinguisher should be placed in
		es		appropriate locations
			5.	All combustibles and flame perils from
		Electrical		machine territory ought to be uprooted

Table 7: Contd.,				
		Shock due to	6.	Adequate ventilation should be there in the
		improper		location.
		operation and	7.	No smoking board should be present near the
		maintenance,		battery.
		battery		
		condition		
		Fire &		
		Explosion due		
		to Sparks,		
		improper		
		storage of		
		flammable		
		substance, poor		
		ventilation,		
		smoking,		
		improper		
		procedures		
5.	Handling	Eye injury	1.	Workers should wear proper PPE like aprons,
	Chemicals	Burn		gloves, safety shoes, safety helmet, goggles,
		Irritation		respirator (if needed) & face shield (if
				needed)
			2.	Workers should use the eye washer if
-				chemicals fall on the eyes
6.	Lifting	Lower Back	1.	Workers should follow correct lifting
	Objects	pain	2	techniques
		Foot injury	2.	Workers should wear proper PPE like gloves
7	F 11'6		1	& safety shoes
1.	Forklift	I rauma due to	1.	Worker should be trained to use a forklift
	operation	Vibration	2.	Workers should wear proper PPE like safety
		Foot Injury		shoes, safety helmet, goggles and hearing
		the Engine		protection
0	Usin a Drill		1	Worker eacht to use sefetu alesses with side
0.	Dillg Dilli Dit Sharmanar	Eye damage	1.	worker ought to use safety glasses with side
	Bit Sharpener	abina	2	Silleiu Grounding ought to be done properly
		Injury to the	Ζ.	proceeding the work
		hands	3	Worker should strictly follow manufacturer's
		Flectrical	5.	instructions
		Shock		
9	Cleaning	Trauma due to	1	Workers should wear proper PPF like aprops
<i>.</i>	ciouning	chemical	1.	gloves safety shoes safety helmet goggles
		contact		respirator or dust mask (if needed) & face
		Inhalation		shield (if needed)
		Foot injury		
		Head injury		
10.	Repair/	Electric Shock	1.	Workers ought to unplug electrical string and
	Routine	Noise		hold control of fitting amid repair/support
	maintenance	Trauma due to	2.	Workers should strictly follow
	of the Air	uncontrolled		Manufacturer's instructions
	Compressor	release of	3.	Lock-out/tag out should be properly done and
	r	compressed air		verified prior to work
		Eye Injury due	4.	Workers should wear proper PPE like safety
		to flying debris		shoes, gloves, safety helmet, safety glasses
		Lland I		with side shields and hearing protection
		riana injury	1	

www.bestjournals.in

			Table 7	/: Contd.,
11.	Handling of	Leakage or		
	gas cylinder	departure of	1.	Gas barrels, control valves, pressure
		combustible		controllers and gauges ought to be utilized
		gasses can		carefully
		deliver a	2.	Broken or harmed hardware ought not be
		genuine		utilized and should be replaced as quickly as
		explosive		time permits
		hazard	3.	There ought to be a standard regular check for
		Gases can be		leaks particularly in joints weight
		reactive	4.	Prior to bringing a combustible gas into a
		Inert gases		response vessel, the vessel must be cleansed
		such as		with oxygen or by flushing with inert gas
		nitrogen.	5.	Naked flames or different paths of ignition
		carbon dioxide		must be thoroughly barred from the region
		and argon can	6	Exhaust lines must be appropriately vented
		bring about	7	Gas receiving compartments must be fit for
		suffocation if	/.	tolerating the required working pressure
		discharged in		tororading the required working pressure
		amount		
		Containers		
		which are not		
		appraised to		
		appraised to		
		nressure can		
		blast while		
		raceiving		
		receiving		
		gasses		
12	Working at	Fall from	1	Do as much work as possible from the ground
12.	height	Height can	1.	Do as much work as possible from the ground
	neight		2.	First ensure workers can get safely to and
		result in		
				from where they work at height
		multiple		
		fractures peak	<u> </u>	Equipments should be maintained and
		injumy fotolity		checked regularly and only suitable ones
		Injury, fatality		should be used by the workers
		due to felling		should be used by the workers
			4.	Precautionary measures should be taken by
		—objects		
				workers when working on or near fragile
				surfaces
			5	Proper PPF must be worn by the workers like
			5.	safety helmet full hody harness safety helt
				etc
			6	Emergency evacuation and rescue procedures
			0.	must be taken into consideration
			7	I adders should not be overloaded and before
			/.	working at height workers must check the
				equipment or materials weight they are
				Corrying For information workers should
				callying. For information workers should
			0	Ladders should not be rested as visit and
			δ.	Ladders should not be rested against weak
				upper surfaces
1	1		9	Ladders should not be used for heavy works.

Table 7: Contd.,			
			they should use them only for light work
			For maximum of 30 minutes at a time

HAZCOM using MSDS

MSDS of all the chemicals that are used in the industry have been analyzed and checked and all the necessary handling techniques of the highly hazardous chemicals are conveyed by PEP talks and it is recommended to the management in worst cases to individually train them.

CONCLUSIONS

Hazard Identification was conducted for the pharmaceutical manufacturing plant and risk assessment was performed on the equipment& machines to identify various hazards using FMEA technique. The nonconformities are mitigated by implementing necessary corrective actions for the results that have been obtained by the above mentioned techniques to improve the safety. All the applicable legal regulation is referred and suitable measures are taken to comply with the regulation wherever the deviation occurs. Task analysis is carried to analyze the behavior of the workers and necessary suggestions were made to change the working habit of the workers by positive reinforcement. Safety and mitigation methods are properly communicated to the workers (HAZCOM), based on Material Safety Data Sheet (MSDS), so as to minimize injury from accidental exposure to hazardous chemicals. Further analysis and review of the Health, Safety & Environment Policy was done and suggestions were given for necessary improvements.

REFERENCES

- 1. Overview of Indian pharmaceutical industry http://www.dnb.co.in/pharmaceutical/overview.asp
- Chernukhaa, I., Kuznetsovaa, O. and Sysoya, V., 2015, December. Hazard Analysis and Risk Assessment in Meat Production Practice in Russian Federation. In The 58th International Meat Industry Conference (MeatCon2015) Guest Editors: Reinhard Fries and Sheryl Avery (p. 42).
- 3. SheikAllavudeen., Sankar- june 2015, Hazard Identification, Risk Assessment and Risk Control in Foundry ,SSRG International Journal of Industrial Engineering (SSRG-IJIE) volume 2 Issue 3–May to June 2015
- 4. Suresh, R., Sathyanathan, M., Visagavel, K. and Kuma, M.R., 2014. Risk Assessment for Blast Furnace Using FMEA. International Journal of Research in Engineering and Technology, 3, pp.27-31.
- 5. National Offshore Petroleum Safety and Environmental Management Authority, Guidance note for Hazard identification Revision 5,2012
- 6. Lars Harms- Ringdahl, 2013 Guide to Safety Analysis for Accident Prevention, DOE Handbook
- 7. Joymalya Bhattacharya, January 2015Quality Risk Management –Understanding and Control the Risk in Pharmaceutical Manufacturing Industry.
- 8. THE INDIAN BOILERS ACT, 1923 (Act No. 5 Of 1923)* (23rd February, 1923).
- 9. Wells, G., 1996. Hazard identification and risk assessment. IChemE.
- 10. Lees, F., 2012. Lees' Loss prevention in the process industries: Hazard identification, assessment and control. Butterworth-Heinemann.

editor.bestjournals@gmail.com

- 11. Tixier, J., Dusserre, G., Salvi, O. and Gaston, D., 2002. Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the process industries, 15(4), pp.291-303.
- 12. Khan, F.I. and Abbasi, S.A., 1998. Techniques and methodologies for risk analysis in chemical process industries. Journal of loss Prevention in the Process Industries, 11(4), pp.261-277.
- Hyatt, N., 2003. Guidelines for process hazards analysis (PHA, HAZOP), hazards identification, and risk analysis. CRC press.
- 14. Arabian-Hoseynabadi, H., Oraee, H. and Tavner, P.J., 2010. Failure modes and effects analysis (FMEA) for wind turbines. International Journal of Electrical Power & Energy Systems, 32(7), pp.817-824.
- 15. Nigam, N.C., Maheshwari, A.K. and Rao, N.P., 2009. Hazard Identification and Risk Assessment. IFFCO–Aonla Training manual.